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The precise classi¯cation for the electroencephalogram (EEG) in di®erent mental tasks in the
research on brain�computer interface (BCI) is the key for the design and clinical application of
the system. In this paper, a new combination classi¯cation algorithm is presented and tested
using the EEG data of right and left motor imagery experiments. First, to eliminate the low
frequency noise in the original EEGs, the signals were decomposed by empirical mode de-
composition (EMD) and then the optimal kernel parameters for support vector machine (SVM)
were determined, the energy features of the ¯rst three intrinsic mode functions (IMFs) of every
signal were extracted and used as input vectors of the employed SVM. The output of the SVM
will be classi¯cation result for di®erent mental task EEG signals. The study shows that mean
identi¯cation rate of the proposed algorithm is 95%, which is much better than the present
traditional algorithms.

Keywords: Electroencephalogram; empirical mode decomposition; support vector machine; motor
imagery.

1. Introduction

Brain�computer interface (BCI) can provide a new
access that does not depend on the surrounding
nerves and muscles for the information interaction
between the brain and the outside.1 In the present
BCI system, electroencephalogram (EEG) is often
used to convey information produced by the human
brain.2 EEG preprocessing, feature extraction and
pattern classi¯cation are the key steps in the design
of a BCI system.

The traditional feature extraction algorithms include
power spectrum analysis, adaptive autoregressive,

wavelet transform, independent component analysis,
common spatial pattern (CPS), etc. All of these
algorithms are good at stationary signal analysis. But
EEG is a typical nonstationary signal, which con-
tains long-time low-frequency component and short-
time high-frequency component. It is of great value to
investigate a novel and e®ective feature extraction
and classi¯cation method based on the time-
frequency characteristics of the nonstationary signal.

Research shows that the energy of the speci¯c
frequency of EEGwill reduce when the corresponding
brain mantle is activated bymental activity, which is
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called event-related desynchronization (ERD) and
that the energy of the speci¯c frequency of EEG will
rise when the corresponding brain mantle is not
activated by mental activity, which is called event-
related synchronization (ERS). The ERD/ERS fea-
ture of EEG becomes obvious when imagining left or
right hand's movement.3

The experimental model of left- or right-hand
motor imagery is most commonly used in designing
BCI system. The EEG data recorded from three
electrodes in the two mental tasks were divided into
training sample and testing sample. After decom-
posed by EMD algorithm for denoise purpose, the
EEG's ¯rst three IMF components were calculated
and used as the input vectors of SVM to classify the
di®erent mental tasks. A relatively ideal result is
received.

2. Method

The purpose of the proposed algorithm is to recog-
nize the mental tasks of the subject by feature
extraction and fusion classi¯cation of the EEG
data. The � rhythm can be detected by the IMFs
and the ERD/ERS phenomenon during left- and
right-hand movement imagination can be analyzed
by the Hilbert marginal spectrum,4 so the strategy
we put forward is to combine the EMD, energy
feature extraction with SVM. The details of each
step are discussed as follows.

2.1. Empirical mode decomposition

EMD algorithm is researched from the assumption
that any signal consists of di®erent simple intrinsic
modes of oscillations. The main aim of the EMD in
this paper is to decompose an EEG time series into
a set of components or functions, known as IMFs,
each of which must satisfy the following de¯nition5:
(1) having the same number of extrema and zero-
crossings or di®er at most by one in the whole data
set, and (2) symmetric with respect to local zero
mean. According to EMD theory, a given EEG
signal xðtÞ can be expressed as follows:

xðtÞ ¼
Xn
i¼1

ciðtÞ þ rnðtÞ; t ¼ 1; 2; . . . ;N: ð1Þ

Here n is the number of IMFs, rnðtÞ denotes the
¯nal residue, and it can be interpreted as the DC
component of the EEG signal, and ciðtÞ denotes all

IMFs that have nearly zero means and are nearly
orthogonal to each other. An original EEG is
decomposed by EMD and shown in Fig. 1.

2.2. The energy calculation of IMF

The energy of a time series cðnÞ with a length ofN is
de¯ned as:

E ¼
XN
n¼1

jcðnÞj2: ð2Þ

After decomposing an EEG signal with EMD
method, the energy values of the ¯rst three IMFs
were calculated and shown in Table 1. Obviously,
the energy distribution of the IMFs is in a regular
pattern for both of the mental tasks.

2.3. Support vector machine

The invention of SVM was driven by statistical
learning theory.5 The output of a binary SVM clas-
si¯er can be computed by the following expression:

fðxÞ ¼ sgn
XN
i¼1

�iyikðxi; xÞ þ b

" #
: ð3Þ

Here xi 2 Rd, yi 2 f�1; 1g are the class labels, fxi;
yigN

i¼1 is a separable training sample set, b denotes a
bias and �i � 0 are Lagrangian multipliers, kðxi; xjÞ
is called kernel function in SVM.The commonly used
kernel functions include linear function, polynomials
function, radial basis function (RBF) and sigmoid
function.
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Fig. 1. Empirical mode decomposition of an original EEG.
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The function that satis¯ed the Mercer theorem
can all serve as kernel function theoretically. Vapnik,
the founder of SVM, believed that kernel function is
not the main factor that a®ects the performance of
the classi¯er as long as its parameters are appro-
priately determined.6 In this paper, the RBF is used
as kernel function of the SVM in our algorithm.

2.4. Optimization of the parameters

in SVM using RBF

In RBF of the SVM, there are two parameters:
penalty factor c and g (g equals to 1=�2, and � is
variance) must be chosen. The default values of
these two factors are both one in most cases.7 Never-
theless, if the optimization parameters are used in
RBF, the classi¯cation accuracy rate of SVM could
be improved. A common method for parameter
optimization is \cross validation".8 The result of the
optimization by cross-validation method is shown in
Fig. 2. There are multi-group values of c and g that
correspond to the best accuracy rate.

Tests show that a too much higher c will cause an
over¯tting phenomenon in the classi¯cation process,
that is to say the classi¯cation has a good accuracy
rate on training set but a bad accuracy rate on
testing set. In our study, the minimal c and corre-
sponding g were chosen in all the combination of c
and g under which can result in the best accuracy
rate. According to our study, the best values of
these two parameters are c ¼ 0:25 and g ¼ 0:75,
respectively.

3. Data Acquisition and Preprocessing

3.1. Experiment description

A benchmark EEG data set that was used in the
BCI competition 2008 was used to evaluate the
performance of the proposed feature extraction and
classi¯cation algorithm.9 The experiment was
achieved and data set was provided by the Depart-
ment of Medical Informatics, Institute for Biomedi-
cal Engineering, Graz University of Technology,
Austria.

There are 280 trials in the available data set,
each trial lasts 9 s, as shown in Fig. 3, and the
subject was quiet in the ¯rst 2 s. When t ¼ 2 s, an
acoustic stimulus indicates the start of the trial.
When t ¼ 3 s, an arrow (right or left) was showed as
a cue, and the subject was asked to do motor ima-
gery along the cue direction. Three bipolar EEG
channels were measured over C3, Cz and C4 lead.
The EEG was sampled with 128Hz and the fre-
quency range of the ¯lter in the recording system is
from 0.5 to 30Hz.

3.2. Data preprocessing

The low-frequency noise will be induced in the EEG
recording system because of the amplitude of the

Table 1. The energy value of the ¯rst three IMF of the EEG signal in di®erent mental tasks.

C3 lead Cz lead C4 lead

Motor imagery IMF1 IMF1 IMF1 IMF1 IMF2 IMF3 IMF1 IMF2 IMF3

Left hand 2705.03 2331.49 2299.36 162.11 16.77 18.76 2299.36 162.11 16.77
Right hand 2459.88 1994.25 2940.30 518.91 91.76 12.50 2940.30 518.91 91.76
Left hand 1927.33 1328.23 1006.67 118.97 6.59 31.83 1006.67 118.97 6.59
Right hand 1046.20 806.93 1582.49 147.07 69.40 10.27 1582.49 147.07 69.40
Left hand 451.96 130.04 129.97 30.18 4.46 11.78 129.97 30.18 4.46
Right hand 398.43 287.89 599.15 197.87 20.31 24.85 599.15 197.87 20.31
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Fig. 2. The contour map of the optimization result for par-
ameters in RBF.
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EEG signal is as small as microvolt, as shown in
Fig. 4(a). The FFT ¯ltering will cause frequency
leakage and signal distortion which lowers the
accuracy rate of the mental task classi¯cation, as
show in Fig. 4(b). We used EMD to ¯lter the low-
frequency component, which will perfectly keep the
useful frequency components.10

The research shows that the ERD/ERS
phenomenon mainly present in the � and � fre-
quency ranges in the o®side and onside of the pri-
mary perception motor cortical area in the human
brain. The � frequency range is between 8Hz and
12Hz, while the � frequency range is between 18Hz
and 25Hz. Thus it can be seen that the frequency
range between 8Hz and 30Hz in the signal contain
the main features.

Based on the local feature time scale of the signal,
EMD can decompose a signal into several IMFs
with their frequency from high to low, as shown in
Fig. 5. Using the ¯rst three IMFs to reconstruct the
original signal, we can ¯lter the low-frequency noise
and keep the useful feature we need in classi¯cation
for the motor imagery mental task. The frequency
spectrum of the reconstructive signal is shown in
Fig. 4(c).

4. Results

Randomly selected 240 trail data from all the 280
trails were used as the training set and the other 40
trails as testing set. Then the sample or the number
of the training set and the testing set were changed

32

321C3 Cz C4

1

5 cm

(a)

0 1 2 3 4 5 6 7 8 9 sec

Trigger
Beep

Feedback period with Cue

(b)

Fig. 3. Electrode positions (a) and timing scheme (b) in the experiment.
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Fig. 4. The frequency spectrogram of the EEG signal in di®erent conditions.
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and the above experiment program was repeated for
enough times to test the accuracy of the classi¯-
cation model.

The classi¯cation accuracy rates in di®erent RBF
parameters are shown in Table 2. From the table,
we can see that the accuracy is improved to 95%
by using the optimization RBF parameters in
the SVM. Table 3 shows several results from the
references using di®erent method with the same

dataset. Obviously, the accuracy of our method is
much better than the traditional algorithms.

5. Conclusion

According to the ERD/ERS phenomenon of the
EEG recorded from di®erent positions in the scalp
of human brain in imagining the left-hand and
right-hand movement, a new classi¯cation method is
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Fig. 5. The frequency spectrum of the each IMF.

Table 2. The accuracy rate in two di®erent RBF parameters.

Default parameters of SVM Optimum parameters of SVM

The number of training sets 240 240
The number of testing sets 40 40
The maximal accuracy rate (%) 92.50 95.00

Table 3. The accuracy of di®erent methods.

First author Feature extraction Classi¯cation tool Accuracy (%)

V. Jeyabalan11 AAR parameters LDA 81.4
ARBFþAAR parameters LDA 88.6

AAR parameters SVM 82.9
ARBFþAAR parameters SVM 87.9

X. Baoguo12 AR, power spectrum BP 85
H. Jianfeng13 SFFT, energy entropy BP 83.3

SVM 91.6
V. Jeyabalan14 Coe±cient of adaptive recursive bandpass ¯lter SFAM 92.0 (C3)

94.0 (C4)
Our scheme EMD, energy SVM 95.0
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presented and used to classify the di®erent EEGs
recorded in di®erent mental tasks in BCI system,
with the average accuracy rate 95.00%.

The selection of the kernel function is a highlight
in the research on SVM. Even though the pros and
cons of application of di®erent kernel functions are
not veri¯ed theoretically, RBF is a common choice
with the advantages of few parameters must be
determined and that it can map the sample into a
higher-dimensional space which is good at dealing
with the nonlinear situation.

For the typical nonlinear and nonstationary sig-
nal like EEG, EMD can decompose the signal into
several IMFs with di®erent frequency range, which
represent the � and � frequency ranges in ERD/
ERS of the EEG signal, these frequency ranges keep
the useful information maximally in the classi¯-
cation of the motor mental tasks.15 The preferable
results we acquired in this paper by the above
method can be interpreted reasonable in theory.
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